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INT~~DUCTION

One of the most significant changes in theoretical computer science

has been the recent infusion of the methods and problems from combinatorial

analysis . Among the most powerful combinatorial theorems which have been

imported to computer science are those of extremal graph theory [1]: in

extremal graph theory , one is interested in the largest (or In complementary

problems, the smalle.et) graph which avoids (or contains) a given structure.

Purely combinatorial results (which have significance, e.g., for the design

of circuit boards) have been obtained by Chung and Graham [2) and by Chung,

Graham, and Pippenger [3]. In this paper , we extend this theory to

encompass results concerning data structures .

As motivation for the results to the described , note that many of the

large data structures manipulated by the programs described in [4,51 have

two characteristics

(I) they are sequentially accessed , and

(ii) many distinct structures convolve in the
same physical memory.

For applications of this sort , it would obviously be desirable to have

available a universal data B truc ture in which all data structures from a

given class may gracefully reside. In view of (i) , by “graceful” we mean

that the sequential accessing characteristics of the embedded data structures

are not too drastically altered. Let us meaeure such alterations by the

dilation of logical adjacencies [6,7] needed to embed all structures from a

given class into a universal structure ; this is then a complementary

extre mal graph theory proble m: what is the size (ni~~ er of edges) of the

smallest universal graph for a given dilation factor
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The main results contained in this paper address such problems from

a number of points of view.

(1) We give several asymptorically optimal universal data
structures for graphs of n vertices when average dilation
[7] is used as a measure.

(2) We discuss a universal data structure for graphs of a
vertices where worst—case dilation is used as a measure [6].

(3) We consider variations of the average dilation measure
which gives favorable comparisons between data structures
studied in [6,7].

(4) We consider the kinds of “sharing” that can take place
between “almost linear” and “almost complete tree—like”
structures.

(5) Finally, we propose a data structure embedding model which
recovers some aspects of random accessing of data items,
and prove a space—time tradeoff which seems to indicate
that no savings is possible in RAN models which assess
accessings costs uniformly (8].

PRELIMINARIES

A graph, C, is defined by its vertices , V(G) , and edges,

E(G) c V(C) x V(G). Edges are assumed to be undirected: a pair of vertices

x,y are connected if either (x,y) E E(G) or (y, x) c E(G). A path between

x0, x1~ is said to be of length n. The distance metric dG(xO, x~) is defined

to be n if there is no shorter path than

A graph represents a data st ucture in the obvious way: vertices

represent nodes or records and connectedness models logical adjacency.

The following relations and their significance for data structures can be

found in (6,71. Let C, G* be graphs. We say that C is T-~oret case

embeddable in C$ (G~~G*) if there is a one-one $:V(G)+V (G*) such that (x ,y)

~ E(G) implies

d~~($(x), 4~(y)) <T. (1)
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Si~~larly, C is A~~Ve~~~e case embeddable in ~ (C < 
a~~ G*) if there

is a one—one Z’ as above such that

d~~(~ (x) , •(y) ) < A . ~ E(G) J .. (2)
x,y

connected

In [4,5], comparisons between several natural classes of graphs give

asymptotic bounds on T, A in (1) , (2) as functions of I V ( G ) I .  Shortly

after the announcement of the results of [6], R. M. Karp suggested to us

the following class of problems connected with extremal graph theory:

what are the characteristics of — universal data structures ; i.e.,

those structures which T-worst case embed all graphs in a given class.

This paper grew out of considering these problems.

UNIVERSAL GRAPHS

Let be a given class of graphs C, IV(G) I a. Let us ask about a

data structure which is or < 
avg universal for ~n In particular, let

us define

w(~’~, T) — 
~~~ {IE (G) I :  G~ 

~ ~n C” ~~ c} (3)

and

a(~”, A) — ~~~ (IE(C) I :C~ ~ ~n G~ < 
avg C).

For T — 1, (3) becomes the complementary extremal graph problem studied

in (2 , 3].

By an n—tree C, we mean a connected acyclic graph C, with IV(G) I n.

It is also convenient to think of trees as rooted in the following sense:

accompanying C, there is an ances tor—de scendent relation that assigns

direct ancestors and direct deecezidenta to vertices in the obvious way so

that a vertex with no ancesto rs can be designated as the root of the tree .

3
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(Obviously this choice is not going to be unique, but we assume that G

is not characterized until such a choice is made) . A d—ary n—tree is an

n—tree in which each vertex has at most d direct descendents . We denote,

respectively, the classes of n—trees and d—ary n—trees by r” and r’~
By [2] it is known that ~n log n < v(F”, t) < ~~~~~~ k(n)

[log log a]

The upper bound was improved in [3] to

w(r”, 1) = O(n log n[log log n]2)

The bounds on a(1”~, 1) are apparently not elsewhere considered.

Superficially, at least, all interest in further characterization of

(3) is destroyed by the following obvious

Theorem. For T > 2

w(r”, T) — ii

Of course, in (3), the “target” graph C may have unbounded degree.

Therefore , it is natural to consider w(r ” , T , S) and aO~f’, T , S) where in

both cases the target graph C is restricted to be in~ the set S. Note that

now the theorem just cited is no longer obviously true .

* Thus — binary trees on a vertices.

t In the seque l, we use log x for log2x and Lux for log.x.
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The best that is known is the upper bound of (3] (S — all cubic

graphs)

w(rn, 1, S) < 2çr exp (log2n/2 log 2) . (4)

It is not obvious that when (i) “targets” are restricted to binary trees

and (ii) w(r’~, T , ~~ is considered, that it is possible to do any better

than the union of all trees in r~, giving a structure of size

But , we have the following

Theorem. For each T > 1, there is a binary tree H, such that C >T H

for all G c F ~ , and
2innin E(G) < Ln4

or in other words

T, F’~) = exp ~~~ (in a) 2 + O(( &n a) 2)

A key step in the proof of this theorem hinges on the solution to

the fascinating “almost linear” recurrence

u - ~~~~ + un 
(5)

12 1
first considered by Knuth [9]. ThIs also establishes a connection

between the theorem and ineq. (4) : u is also the number of partitions

of 2n of the form Ea~ 2~ , c~ — 0, 1. Knuth [9] bounds the partition

function
1 2P(m) - exp ( w 3 m )  .4n;
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There are two possibilities for improving the bounds in w(r~ , T , F~).

The first possibility is to introduce circuits to the target graph of the

previous theorem, but this does not appear to give an asymptotically

better bound than (4). The second possibility is to prove that balanced

trees and unbalanced trees are < T — equivalent. This seems unlikely since

combining such a result with the proof method of the previous theorem

gives a polynomial sized universal tree. However, in trying to improve

the bounds on w(r~, r, r~) it may be desirable to ignore irregular trees,

letting only very balcuiced or very unbalanced trees reside in the same

universal data structure.

In any case, it seems unlikely that polynomial structures are possible.

We are, however, far from proving this; indeed, the best known lower bound

is the following

Theorem. For all a > N

T, ~‘~) > c(T) n log n

where c(T) > 0 is a constant for fixed T > 1.

Certain other subcases are also of interest. Erd3s , Chung, and Grahamt ,

consider v(S,l) and obtain

w(S l) <~~~~n~

The following theorem is an improvement , but is s~.rely not the best

possible bound.

Theorem

w(S,l) < ~~ a
2

t Private Co~~anication.
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A non—trivial lower bound would clearly be desirable. Another class of

interest are graphs of high genus .tt We conjecture that for graphs of

fixed genus y, it is possible to do better than the naive (
~
) bound

obtained by embedding in the complete graph .

Our next series of results show impressive improvements by passing

to average dilations. We now get optimal constructions, even in a variety

of limited settings.

We have, for ins tance , the

Theorem. For a > 0 ,

a(r~, ~~, S) = O(n l0
~~

2
~~

) )

Since there is a linear lower bound on a ( , ’, ) ,  this construction is

optimal . By a slight modification of the construction, this gives

a(r~, A, S) = 0(n) , for all A > I, but this result may be superceeded by

the following

Theorem. For each A > 1, there is a binary tree H , such that

0 < avg~~

for all G C ~~~ and

IE(G) I — 0(n)

or , in other words

a(r’~, A, ~~ = 0(n) .

ft A graph is of genus y if it can be embedded in a sphere with Y
handles [10].
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These results are rela ted to the ability to “cut” graphs in

advantageous ways. For example, a generalization of the planar separator

theorem [U] to graphs of high genus , obtained by Lipton and Tarjan , gives

us the following

Theorem. Let L~ be the class of graphs G with genus y and IV(G) I = a.

Then, for all a > N,

a aa(L
1
, A, F2) < c(A).n

where c(A) does no~ de~end on n.

EXTENDED N)DEL

In comparing classes of data structures (see, e.g., [6 ,7] the measures

of “eff iciency” have implicitly assumed that only sequential accessing is

important. Thus , when in [6], we bound the efficiency, T , of an embedding

of n X n array into binary trees by

T > c l o g n

the function T(n) captures the dilation factor in an embedding. We now

describe a generali zation of this concept which recovers a certain kLlid of

rxzndom accessing. Since the precise definitions are quite complex, we will

settle for a less exact —— but more picturesque — rendering. Let us assume

that we have in front of us an illustration of a graph C, and also a number

of friends who agree to lend us their forefingers for use in tracing the

paths of the graph . Our friends oblige us as follows: We may start

traversing at any vertex already visited. The traversal rule is, then,

that we must either traverse graph edges or “jump” to a vertex pointed to

8
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by a friend . The time required to traverse a sequence of vertices is then

simply the number of applications of traversal rules. Notice that the

result of a traversal is not necessarily a path of C. The connection

between fingers and random accessing is that traversals requiring k—fingers

also require k— ”addresses” for the vertices pointed to.

We then say that G < k ,T G* if there is a one—one ‘1:V(G) + V(G*) , so

that for every x ,y C V(C) with dc(x ,y) = m, there is a k—finger traversal

from ~~x) = x* to ~(y) = y* with time at most t~, and t~ < Td~~(x*, y*).

We have the following

Theorem. If G is the n x a array [71, II is a b inary tree

and

Gn~~.k,T(n) H

then

k + T ( n ) > c l o g n ,

where c is a cons tant independent of n.

OTHER TYPES OF AVERAGE EMBEDDING

The relation < 
avg may be thought of as averag ing — with relative

frequencies uniformly distributed to the edges E(C) — over the edges of C.

We now make a more global definition which may be used to recover our

intuitions about path lengths in binary trees [7]. We will essentially

average our shortest paths:

C < 
paths G* if there is an embedding ‘~:V(C) ÷ V(G*) such that

($(A , ~(y) ) < A .  ~~~dc (x ,y) .
d ( x), ~~y) x,y

9
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We then have the following

Theorem. For each n > 0, let A be the least real number such that

G~~<
Path8 R ,

for a binary tree H. Then

lIm A -0n-’~ U

Thus, we see that if the average embedding is required to work well on

all shortest paths, then the embedding cost goes to zero. In a sense,

then < 
avg 

“charges” more heavily than < paths for any bottlenecks .
A A
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